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THE CONSTRUCTION OF THE CONSTANT-VELOCITY CONTOUR OF A FOUNDATION OF A 
HYDRAULIC INSTALLATION IN THE CASE OF THE FILTRATION OF TV0 

LIQUIDS Of DIFFERENT DENSITY* 

E.N. BERESLAVSKII 

An underground, constant-velocity contour is constructed for the case 
when a layer of stagnant salt water forms at a certain depth in a flow 
of water under a ayke. Results of numerical computations are presented 
and an analysis given of the influence of the fundamental defining 
parameters of a model on the form and size of the underground contour of 
a dam. Limiting cases of flows are mentioned, namely the scheme with a 
water-confining stratum /l/ and filtration around a point channel 12-41. 

1. ~~~~t~ of the p~bZe~_ Consider the steady plane flow of fresh water of density 
& under an undergroundimpermeable contour of a channel BC in the case when a layer of salt 
water of density Pr(pa>h) appears at a certain depth above an impermeable layer of salt. 
The domain of filtration z (Fig.1) is bounded from below by a boundary AD passing through a 
fixed point go= -i& where hh, is the depth of the initial surface (before the squeeze) of 
salt water. The pressure H acting on the installation and the width of the flood bed 1, whose 
left-hand end is fixed at the point B(z= -4) are assumed given, and the boundaries of the 
head and tail by AB and Cp are horizontal. The flow obeys D'Arcy's law, and the soil is 
assumed to be homogeneous and isotropic. 

Let us introduce the complex potential o= (p+iq and complex coordinate 
respectively, to xh, 

z=o+iiy 
referred, and h,, where 1~ is the soil filtration coefficient. Let us 
put cp= --N/z On AB, pi = H/2 on CD and e=Q along the water-impermeable contour of the 
flood bed EC, where Q is the filtration flow rate. 
ditions must hold at the boundary line AD: 

Then we find that the following con- 

cp - cy = coost,l@ = 0 (c = P*/& - 1) (1.i) 

The first relation of (1.1) for the segment AD follows from the assumption that salt 
water is stagnant and the pressure remains continuous during the passage across the boundary 
line /5, 6/. The condition of continuity of the potential at infinity to the left and right, 
together with condition /5, 6/ h, = (hX + h,)/2, 
the incompressibility of the liquid, 

which follows from the assumptions concerning 
determine the value of the constant in condition (l.l), 

and the difference in depth to the left and right after squeezing %-hh,=~lc. From this it 
follows that 

& = hB + H/(2c), h, = h, - Hff2c) (1.2) 
and this determines the region of flow of the ground water. 

Next it is required to construct an underground contour BC, so that the filtration rate 
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along it has a constant value uo, and we shall also need to determine the position of the 
boundary of separation AD. 

Fig.1 

Fig.2 Fig.3 

2. Constmdcting the sohtion. The case v,(c. The region of the complex velocity plane 
w shown in Fig.2 represents a circular pentagon with right angles at the corners A,B,C,D and 
the cut AD. We take, as the canonical region, the rectangle in the T plane (Fig.3) connected 
to the o-plane by the relation 

z =i wl(2H) 4 '/a (2.11, 

Then the filtration flow rate wil.1 be given by the formula 

Q=fiKfK=iTA W3 

where R=K(k) is a complex elliptic integral of the first kind with the modulus k, K’=K(k’), 

k’ = m, A = K’iK. 

Let us now map conformally the rectangle of r-plane onto the region ABCD of the W-plane 
using the method given in /7/ for constructing the mapping functions fox circular polygons of 
the type discussed here. Taking (2.1) into account, we obtain the solution of the problem in 
the following parameteric form: 

where fh is the theta function /8/. 
Writing expression (2.3) for various segments of the boundary of the region c and inte- 

grating, we obtain the equations for the corresponding segments of the scheme. Below we give 
the required equations of the boundary of separation AD ana of the constant velocity contour 
BC: 
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Let us note the limiting case of C= co(p,=m), which can be treated within the framework 
of the filtration scheme under discussion, as the "freezing" of salt water. The line of 
separation now becomes a horizontal, water confining stratum, and this can be confirmed using 
Eq.(2.3) with help of the expression for p, and remembering that $= 0 on AD. As a result, 
we find that when c=CQ on AD, then 

dz 2ff +f-+)+a(~--+) -=- 
dr (2.8) 

and therefore (&&)~n = 0, ff&, = CoaBt. 
Passing in (2.6) to the analytic functions /8/, we transform (2.6), after certain 

manipulations and using the substitution 

t= wsn*(ZKr,kf-(l-+Z) 
b[i+a--2sn'(ZKr,k)] ' 

A= f--k‘ 
W 

to a form which is completely identical with Eq.(7.8) of /6, p.189/, provided that we put in 
the latter a=O,B==f. or with the result of dividing the equations (1.5) and (1.4) of /I./. 

Thus we find that in the limiting case in question the boundaries of the bays are at the 
same height (T=O) and the flood bed itself becomes symmetrical (t, = u. 

Case v*==E. Passing in (2.3) to the limit as q-c, taking into account the formulas 
for a and p and removing the resulting indeterminacy O/O by means of L'hopital's rule we 
obtain, after some reduction 

dz 28 --x+iKZ[R(2+-1)] 
-=-z- d? Z[K(27- I)] (2.7) 

where Z is the Jacobi zeta function /a/. We can obtain the same representation by inverting 
the region W relative to the circle with centre at the point w 5i -*uo which, in the present 
case, represents the point of intersection of all boundary segments of the region of complex 
velocity. 

Case v,>c. Transforming the solution 12.3) in conformity with the relation Q>C, we 
obtain 

Let us mention the limiting case of V~=CO, 
region of complex velocity. 

connected with the degeneration of the 
The points B and C will then coalesce at infinity (Fig.2) and 

the rectangle in the r-plane will be transformed into a half-strip IFig.3). Here k -0 and 
from (2.8) we obtain 

where A is a constant regulating the position of the tip of the cut in the w-plane. Eq.(2.9) 
is identical with Eq.(1.3) of /4/ apart from the notation, provided that we put, 
t = sin% and A = 1fn. and also with Eq.(2.5) of f3f when y=O. 

in the latter, 

Thus the limiting case in question corresponds to the scheme of a point channel. 
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Critical mode. Finally we shall consider the critical mode of flow which occurs when 
h,=H/(Zc)-1 TI. Then we have, in accordance with (1.41, h,=--IT\. Consequently the right 
end of the cutwillrest against the boundary of the tail bay, and a portion of the brine will 
emerge to its surface. In the w-plane this will correspond to the disappearance of a cut 
and degeneration of the circular pentagon to a triangle (when J-JO < c) I or a quadrangle (when 
ua > 43 bounded by two ellipsoidal arcs and rectilinear segments orthogonal to them. 

In both cases the solutions are obtained from (2.3) by passing to the limit as k' - 0 
and from (2.8) at a= Al2 respectively, and take the following form: 

(2.10) 

dr 2Hi 
dr=- c 

3. Ccmputationat scheme and amitysis of the results. The basic representations (2.31, 
(2.7) and (2.8) contain an unknown constant, i.e. the modulus k, which can be found with help 
of the width z of the flood bed. Having found the modulus k, we determine the coordinates 
of the points of the boundary line AD and the contour of the flood bed with help of the 
formulas (2.4) and (2.51, as well as the depth of the flood bed d, the difference !2' between 
the levels of the head and tail bay, and the filtration rate, from formula (2.2). 

Table 1 

Table 2 

Fig.1 shows the smooth contour of the flood bed and the boundary line computed for 
H = 0.15; h, = 1.0; c = 0.175; v, = 0.0805 and 2 = 1.3 (Z,= 1). Tables 1 and 2 gives the results of the 
computation showing the effects of the quantities c,uO and 1 on the filtration characteristics 
T,d and Q in the case when h,>O, i.e. ho> El(2c). The parameters c,u,, and 1 are varied 
one at a time, with the remaining parameters are fixed at the values used in Fig.1. The 
analysis of the dependence of the characteristics sought on the above parameters reduces to 
the following. 

1". When c increases, i.e. when the dam strength is increased from the side of salt water 
by a factor of 2.2, d and Q increase by a factor of 1.2. The same changes result when the 
parameters u0 and 1 are increased by 3.6-3.8%, and this indicates how great is the influence 
of the filtration rate and the width of the flood bed. Moreover, we note that the above 
changes in the values of u. and 1 lead to somewhat proportional changes in the values of d, Q 
and also T (when v,>O.OSOS). This feature was first mentioned in /l/ in connection with the 
parameters u. and H. 

2". The quantity T undergoes the greatest changes, which can be very large. Thus, when 
the velocity v, changes from 0.0735 to 0.0865, T increases by more than 400 times. 

30. The qualitative agreement of the results when the parameters vp and z were varied, 
merits attention. When the parameters decrease, the depth of the flood bed increases sharply 
together with the rate of flow. The third column of Table 2 shows that another important 
conclusion is confirmed, which has also been mentioned in /l/, namely that the shorter the 
flood bed, the thicker it should be for the same value of the velocity u,. 

In conclusion we note that the proposed method can be extended to the case of a 
rectangular flood bed whose corners are rounded along the curves of the constant rate of 
filtration. In this case the results of /7/ can again be used for the conformal mapping of 
the circular hexagon with right angles and two cuts onto a rectangle. 
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ESTIMATES OF THE PARAMETERS OF INCREASING PERTURBATIONS IN SHEAR FLOWS 
OFAN INHOMOGENEOUS MAGNETIZEB PLASMA* 

N.A. G~ZUNOVA and YU.A. STEPANYANTS 

The method of integral relations is used to obtain estimates of the 
phase velocity and perturbation growth increment in the shear flow of a 
magnetized plasma, analogous to existing estimates ./I, 21 in the 
hydrodynamics of stratified fluid,and to refine the results obtained in 
/3/. 

1. We shall start with a well-known system of equations of magn~tobydrodynamics for an 
ideal incompressible fluid of variable density in a gravitational force field /4/: 

Here p and p, are the pressure and density perturbations, P (2) 
density distribution along the vertical, 

is the unperturbed 
and the remaining notation is traditional. 

Let the fluid be contained between two horizontal solid boundaries z= 0 and Z= H. The 
components of the flow velocity vector and magnetic field strength have, in the unperturbed 
state, the form (V (2). 0, 01, (& (z), 0, Of. We shall assume that the perturbations of these fields 
are two-dimensional: 7 = 1% 0, W), 6 = tbx, 0, Q. Linearizing the initial system of equations and 
seeking the solutions in the form of a product obtained by multiplying the corresponding 
structural functions depending on z by sxp {rk(z-- ct)), we reduce the system (1.1) to a single 
equation for the auxiliary function I(z) = F (e)lU(z)- cl"ip' (a prime denotes a derivative 
with respect to z), where F (2) is a function defining the structure of the density per- 
turbation along the vertical. Ne multiply the equation obtained in this manner by a complex 

conjugate function f(z), and integrate the result in s from 8 to H. As a result we arrive 
at the following integral relation (from now on the limits of integration will be ommitted 
for siaplicityl: 

(f.2) 


